If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2+54y-16=0
a = 7; b = 54; c = -16;
Δ = b2-4ac
Δ = 542-4·7·(-16)
Δ = 3364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3364}=58$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-58}{2*7}=\frac{-112}{14} =-8 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+58}{2*7}=\frac{4}{14} =2/7 $
| -14+y=12 | | -16x^2+96x+1152=0 | | 15=-2n-8+7 | | X+x-63+x/4=180 | | 15/90=13/x | | (20/x^2-4)-(5/x-2)=(8/x+2) | | 20-14=2(x-3) | | 5k-4/4=2 | | C(x)=17.5x-10 | | (2n+1)/3-8n=5 | | 30-14=2(x-3) | | 6|x+5|-2=10 | | f+96=180 | | 23s-5=21s+5 | | -1+v/6=-1 | | 5/3=a/8 | | -1+14s=12s+17 | | (2m/3)-1=1 | | 6x^2=-9 | | |x+3|=10 | | 2k-5/5=4 | | -4x+10=-6x-6 | | -x-2x+7=7x-6 | | (−2g+7)= | | 5f=9(191.8-273.15)+32 | | t+2+12t+36=0 | | s+139=132 | | -8(y-1)=y | | 456+78+f=904 | | 0.002f=100 | | -4x-4x=-3 | | 8d-4=60 |